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Outline 
•  Aerodynamics 

–  Introduction/History/Methods 
–  Dynamic Stability 

•  Aerothermodynamics 
–  Introduction 
–  Methods 
–  Special Topics 

•  Case Study: MSL 
•  Q&A 

•  Material focuses on blunt rigid capsules 
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Definitions 
Force Coefficient Moment Coefficient 

Lift Coefficient 

Drag Coefficient 

Pitch and Yaw Damping Coefficients 
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Aerodynamics = forces & moments 
imparted on the entry vehicle by the 
atmosphere!

Primary EDL Needs: High CD, Static 
stability (dCm/dα < 0)! F = (pressure+ shear)

surface
!

M = (pressure+ shear)
surface
! " (l # lref )



The Blunt-Body Arsenal* [2-37] 
•  EDL vehicles generally have blunt heatshields à high aerodynamic drag!
•  Other geometry drivers: packaging, stability, heating, science!
•  Backshells are generally selected to accommodate payload!
"
"
!

Russia!

* Earth-entry unless noted. NASA or US Govt. mission unless noted. 
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Flight Regimes (e.g. MSL) 
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Each flight regime requires unique prediction methods!



Newtonian Aerodynamics [38,39] 
Newtonian method is an approximate method for estimating static 
aerodynamic coefficients!
Newtonian method is more accurate for blunt bodies at hypersonic conditions"
"
"
"
"

"
!

Lester Lees [40]: Updated Newtonian model replacing “2” with the maximum Cp 
based on Rayleigh Pitot equation (normal-shock relations), experiment or CFD. "

"
Modified Newtonian “sine-squared law:”   "
"
" for 
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Modified Newtonian Aerodynamics 

For hypersonic flows, local pressure is a function of the local surface angle 
relative to the flow "

From Lees [40] 
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Blunt Body Aerodynamic Characteristics 
Modified Newtonian, Air, Mach = 20 

More blunt = more drag More blunt = less stable 

More blunt = more lift with AoA 
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Viking Design vs. Flight Trim AOA and L/D [17] 
•  Viking was designed for L/D = 0.18 at a hypersonic trim AOA of 11 deg 
•  Aerodynamics were predicted from wind tunnel and ballistic range tests in air, 

CO2, CF4 
•  VL1 and VL2 trim AOA (and L/D) were higher than the design values 

–  Believed at the time to be caused by an off-nominal CG location and outgassing/
ablation at the time, although low heat flux was experienced 
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Flight 

Flight 



National Aerodynamic Experimental Facilities 

From [10] NASA TN-D 3748, ”Apollo Wind Tunnel Testing Program 
Historical Development of General Configurations” 
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From [10] NASA TN-D 3748, ”Apollo Wind Tunnel Testing Program 
Historical Development of General Configurations” 
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National Aerodynamic Experimental Facilities 



Computational Fluid Dynamics (CFD) 
•  Definition: Numerical solution of the fluid dynamic equations of motion 
•  The closing of wind tunnels & advancement of computers has pushed 

CFD to the forefront of aerothermodynamics prediction 
–  CFD is a high-fidelity method of “simulating” flight conditions (esp. hypersonic) 

•  But, the resources required can be large (people, time, computers), 
especially for complex 3-D geometries 

•  Examples: LAURA (NASA Langley), DPLR (NASA Ames) 

Vehicle Geometry CFD Grid 

CFD Output 

Navier-Stokes Equations 
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Dynamic Stability 
•  Blunt bodies are dynamically unstable at supersonic 
speeds - driven by wake flow"

•  Phenomenon starts around Mach 3.5 and slower"

•  Stability can vary dramatically with backshell shape"
"
•  Unsteady CFD has provided insight on flow 
mechanisms"

•  Experiment is the only validated method of 
determining pitch damping coefficients"
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Free Flight Dynamic Stability Test Facilities 
NASA Ames HFFAF  (can test lifting, but Re is typically low) 

Eglin Air Force Base: Aeroballistic Test and Evaluation Facility (ATEF) 
(Used for all recent robotic missions but currently mothballed) 

200m Range 
50 stations 

MSL model 
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[24] AIAA-2005-0055 

Mars Pathfinder Reconstruction 

MPF Flight "
Data "

Reconstruction 

MER BR"
Data in MPF"

Prediction  

MPF"
Preflight"

Prediction 
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Statics: LAURA CFD!
Dynamics: Ballistic Range!



Aerothermodynamics 
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What is Aerothermodynamics? 
•  Definition: Aerodynamic heating of a solid surface by a gas through a 

viscous boundary layer & high-temperature shock layer 
–  First addressed in the 1950s with the advent of hypersonic re-entry missiles 

•  Aerodynamic heating is most often associated with hypersonic 
atmospheric flight  high velocity + dense atmospheric gas = high 
temperatures 

“Two major problems encountered today in aeronautics are the determination 
of skin friction and skin temperatures of high-speed aircraft.” 
E. R. Van Driest, 1950 

Apollo Space Shuttle Pioneer Venus Mars Science Laboratory 
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Thermal Protection 
•  Entry vehicle kinetic energy  increased 

shock layer temperature  increased surface 
temperature 

•  Payloads, human or robotic, must be 
protected from extreme temperatures 

•  Load-bearing structures cannot perform 
adequately at elevated temperatures 
–  Material performance degrades 

•  The type & amount of thermal protection 
system (TPS) material depend on the 
prediction of aerodynamic heating at flight 
conditions 
–  Heating = f(time), surface pressure & shear 

stress may also be important 
–  Difficult/impossible to simulate flight conditions 

in ground facilities 
•  TPS adds mass to the EDL system! 

T < 0° F 

“Room”  
Temp. 

Tsurf > 1000° F 

Tbond < Tcrit 
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Terminology 
•  Convection = heat transfer via conduction & 

diffusion through a viscous boundary layer 
–  Conduction ~ Temperature gradient at surface 
–  Diffusion (aka Catalytic Heating) ~ Gas/surface 

chemical reactions 
•  Radiation = heat transfer via atomic excitation in a 

high-temperature shock layer 
–  Radiation ~ Shock layer temperature 

 
•  Heat rate (qw) = instantaneous heat transfer      

(W/cm2) 
•  Heat load (                ) = integration of qw (J/cm2) 
•  Convective & radiative heating magnitudes 

depend on the entry vehicle & conditions 
–  Mars: mostly convective 
–  Earth (lunar return), Venus, Jupiter: convective & 

radiative Schematic of Aerodynamic 
Heating to a Blunt Body 
(Ref. Anderson) 

Convection Radiation 

qw = qCond + qDiff + qRad

U = U(y) 
T = T(y) 

y 

Qw = qw dt!
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•  Definition: Analytical solutions to the 
boundary layer equations 

•  Entry vehicles can be approximated by 
simple geometries 

–  Nose (hemisphere), leading edge (cylinder), 
surface (cylinder or flat plate) 

•  Engineering methods have an important 
place in conceptual vehicle design 

–  Quick to use, based on theory, can be 
integrated into trajectory codes 

•  Examples for stagnation point heating: 
–  Requires effective nose radius (Rn) 

Engineering Methods 
Simplified Entry Vehicle Geometries 

Fay & Riddell (1958) 

~ 1/Rn 
qc =C

!!
Rn

"

#
$

%

&
'

1
2

V!
3Sutton & Graves 

(Convective) 
Earth: C = 1.7415e-4 
Mars: C = 1.9027e-4 

qr =CiRn
a!!

m fi V!( ) Earth: a = 1, m = 1.2 
Mars: a = 0.526, m = 1.2 

Tauber & Sutton 
(Radiative) 
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•  Assumptions: Sutton-Graves stagnation point heating (Rn = Reff), ballistic 
entry, exponential atmospheric density 

•  A steeper FPA increases max. heat flux, but decreases heat load (TPS 
thickness) 

–  Potential for TPS mass savings by using a steeper entry 

BC = m/CDA = 90 kg/m2;  Ve = 5.5 km/s 

Example: Mars, Effect of Flight Path Angle 
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BC = m/CDA, γe = -12 deg,  Ve = 5.5 km/s 

•  Assumptions: Sutton-Graves stagnation point heating (Rn = Reff), ballistic 
entry, exponential atmospheric density 

•  If the BC increases, heating will increase 
–  Example: payload mass grows, but aeroshell diameter does not 

Example: Mars, Effect of Ballistic Coefficient 
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Rules of Thumb for Ballistic Entry 
•  Stagnation point convective heating: qc ~ ρ∞1/2V∞

3 / Rn
1/2 

•  Stagnation point radiative heating: qr ~ Rn
m 

•  Wall temperature: Tw
4 ~ qc 

•  Convective heat flux, qc: 
–  with  entry velocity#
–  with  ballistic coefficient (mass)#
–  with  entry flight path angle#

•  Convective heat load:  
–  with  entry velocity#
–  with  ballistic coefficient (mass)#
–  with  entry flight path angle#

Qc = qc dt!
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EDL Flight 
Conditions 

Te
m

pe
ra

tu
re

 
•  Ground-based testing, while valuable, cannot replicate all EDL flight conditions 

–  Technically & fiscally prohibitive to build & run such facilities 
•  Aerodynamic heating analysis at flight conditions is usually left to engineering 

methods (conceptual) & high-fidelity CFD models (TPS design) 
–  Ground data are used to anchor models to be used for flight predictions 

Ground-to-Flight Traceability 
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Ground-to-Flight Traceability 
•  Heating magnitudes in ground facilities ≠ heating in flight 

–  Differences in Mach, Re, gas composition… 

•  Ground facilities are used to understand qualitative heating and to 
provide a source of data for CFD validation 

–  Ground testing does not generally include TPS response, which is added post-CFD 

MSL Testing in AEDC Tunnel 9 (Mach 8) MSL Flight CFD (30 > Mach > 7)  

26 June 15-16, 2013 International Planetary Probe Workshop 10 Short Course 2013 



Schematic of BLT (Ref. Anderson) 

Boundary Layer Transition (BLT) 
•  Predicting BLT is one of the most 

difficult aspects of aerodynamic heating 
–  Mechanisms not well understood 

•  BLT can increase max. heat flux and 
total heat load  TPS mass & 
performance 

–  qTurb > or >> qLam 
–  Stagnation point may not have highest qw 

•  Engineering methods are often used to 
predict BLT timing 

–  BL momentum-thickness Reynolds no.,    
Reθ > Reθ,crit 

–  Examples: Space Shuttle, MSL 

•  Conservative approach is to design for 
turbulent conditions using CFD 

"When I meet God, I am going to ask him two questions: Why 
relativity? And why turbulence?  I really believe he will have 
an answer for the first.” - Werner Heisenberg 

BLT Design for Space Shuttle 
Windward Body Point 

(Ref. AIAA 79-1042) 
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BLT on STS-119 
•  HYTHIRM imagery of Space Shuttle lower surface 

feet

fe
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Temperature (F)
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•  Conservative approach is to 
maximize catalytic heating 

–  “Super-catalytic” = recombine all atoms 

Catalytic Heating 
•  High shock-layer temperature dissociates gas molecules 

–  Mars: CO2/N2 in front of shock  CO2, N2, O2, CO, C, N, O behind shock 
–  Earth: N2/O2 in front of shock  N2, O2, N, O, NO + ions behind shock 

•  Post-shock gas may recombine at surface 
–  Heat of reaction = Catalytic heating = Higher convective heating 

MSL Predicted Convective Heat Flux 
at Peak Heating (No Uncertainties) 

qConv = qCond + qCat 

CO2, N2 

Mars Non-Equilibrium Chemistry 
CO + O 
O + O 
CO + O2 
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Aftbody Heating 
•  Heating on vehicle components that are in the wake 

of a hypersonic flowfield are more difficult to predict 
–  Separated, unsteady, turbulent, low-density flow 
–  Uncertainties are > than for heatshield 

•  Heating is generally < 10% of stagnation point 
heating for a blunt body 

DPLR CFD of AS-202 (Ref. AIAA 2004-2456) 

Ballistic Range Model 
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Case Study: 
Mars Science Laboratory 
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Mars Science Laboratory (MSL) 
•  Guided entry (trim α = -16 deg, trim L/D = 0.24), RCS bank control 
•  Large heatshield + high m/CDA = BLT expected prior to peak heating, 

resulting in high heating rate 

Viking 1/2 Pathfinder MER A/B Phoenix MSL 

Diameter, m 3.5 2.65 2.65 2.65 4.5 
Entry Mass, kg 930 585 840 602 3152 
Entry Vel., km/s 4.5/4.42 7.6 5.5 5.9 5.9 
Entry FPA, deg -17.6 -13.8 -11.5 -13 -16.1 
m/(CDA), kg/m2 64 62 90 65 135 
Hypersonic α, deg -11.2 0 0 0 -16 
Hypersonic L/D 0.18 0 0 0 0.24 
Heat Flux, W/cm2 24 106 48 56 >200 (Design) 
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MSL Heatshield & MEDLI Instrumentation 
•  MISP: 2-4 thermocouples (0.1-0.7 in below surface) at 7 locations 

–  Surface heating comes from inverse analysis of temperature data 

•  MEADS: pressure transducer at 7 separate locations  capsule attitude 

T4

T1

T5
T7

T6

T3 T2

NASA/JPL-CalTech/Lockheed-Martin

MEDLI Locations! MISP Locations on Flight Heatshield!
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MSL Reconstructed Angle-of-Attack [28] 

•  Trim angle and Lift-to-Drag predictions were very accurate 
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MSL CA [28] 

•  MEADS Supersonic CA remains area of study 
• Viking-derived base pressure correction remains possible error source 
•  Winds and supersonic drag are the two dominant contributors to landing miss 
distance 
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MSL Boundary Layer Transition 
•  BLT indicated by rapid increase in dT/dt 
•  MISP T2, T3, T6, and T7 all experienced BLT 
•  Small bump at T5 believed to indicate BLT 
•  All BLT events occurred prior to peak heating, as expected 

Time Rate-of-Change of Temperature 0.1 in. Below Surface 

BLT 
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MSL Reconstructed Heating 

•  Expected results: 
Laminar heating highest at T5 
Laminar heating lowest at T2, T3, T6 
Turbulent heating highest at T2, T3 

24 June 2009 41st AIAA Thermophysics Conference 
 

BL-37 

•  Unexpected results: 
High turbulent heating at T7 relative to 
T2, T3  roughness? 
High heating at T1, T4 relative to T2, 
T3  radiation? 

MISP Heating Rate from FIAT Inverse Analysis (Estimated +/-15% Uncertainty)!
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Max. Heat Flux for Select Entry Vehicles 

Increasing Entry Velocity 

Ref. Davies, C., “Planetary Mission Entry 
Vehicles, Quick Reference Guide: 
Version 3” 

Earth 
Mars 
Venus 
Titan 
Jupiter 
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Heat Load for Select Entry Vehicles 

Earth 
Mars 
Venus 
Titan 
Jupiter 
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Ref. Davies, C., “Planetary Mission Entry 
Vehicles, Quick Reference Guide: Version 3” 

Increasing Entry Velocity 
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Questions/Discussion? 

ISS Expedition 31, NASA/Bill Ingalls NASA/JPL-Caltech/Univ. of Arizona  
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